# **Testing and Evaluation of Metallic Bipolar Plates for PEM Fuel Cells** Hazem Tawfik, Kamel El-Khatib, Jeff Hung, and Devinder Mahajan

## **MOTIVATION**

#### **Contact Resistance Experimental Setup**

High oil cost threatens our national economy
Hydrogen fuel cells promised clean and efficient alternative energy

•Bipolar plates that represent the backbone of the PEM fuel Cell are currently made of graphite or graphite composites that are brittle, permeable to gases, and have poor manufacturability and conductivity relative to most metals

•Metallic bipolar plates hold excellent potential for durability and cost effectiveness



The set of oil our nation uses each day.
 The set of the s

either gasoline or diesel fuel.

## Hydrogen Economy or Hydrogen Energy System



# **Types of Fuel Cells**

| Fuel Cell<br>Type                       | Electrolyte                  | Anode<br>Gas                     | Cathode Gas                      | Temp.                             | Efficiency |
|-----------------------------------------|------------------------------|----------------------------------|----------------------------------|-----------------------------------|------------|
| Proton<br>Exchange<br>Membrane<br>(PEM) | Solid<br>Polymer<br>Membrane | Hydrogen                         | Pure or<br>Atmospheric<br>Oxygen | 75 C<br>180 F                     | 35-60%     |
| Alkaline<br>(AFC)                       | Potassium<br>Hydroxide       | Hydrogen                         | Pure Oxygen                      | Below<br>80 C                     | 50-70%     |
| Direct<br>Methanol<br>(DMFC)            | Solid<br>polymer<br>membrane | Methanol<br>solution in<br>water | Atmospheric<br>oxygen            | 75 C<br>180 F                     | 35-40%     |
| Phosphoric<br>Acid<br>(PAFC)            | Phosphorous                  | Hydrogen                         | Atmospheric<br>oxygen            | 210 C<br>400 F                    | 35-50%     |
| Molten<br>Carbonate<br>(MCFC)           | Alkali-<br>Carbonates        | Hydrogen,<br>methane             | Atmospheric<br>oxygen            | 650C<br>1200 F                    | 40-55%     |
| Solid Oxide<br>(SOFC)                   | Ceramic<br>Oxide             | Hydrogen,<br>methane             | Atmospheric<br>Oxygen            | 800-<br>1000 C<br>1500-<br>1800 F | 45-60%     |







Contact Resistance Measurements calculation X1 = Contact resistance between copper and gas diffusion layer (GDL)

X2 = Contact resistance between bipolar plate and gas diffusion layer (GDL)

R1 = X1+X1= 2(X1)

R2 = X1+X2+X2+X1 = 2(X1)+2(X2) X2 = [R2-2(X1)]/2=(R2-R1)/2



Interfacial Contact Resistance Milli-Ohm.cm2



Interfacial Contact Resistance Milli-Ohm.cm2 at 200 N/cm<sup>2</sup>



Corrosion Current for Various Materials Amp/cm<sup>2</sup>



Polarization and Power Curves for Metallic and Graphite Bipolar Plates

lifetime test at 70 °C



Lifetime testing of Metallic and Graphite Composite Bipolar Plates for 1000 hrs Under Identical Operating Conditions (70 Degree C, ) airflow rate of 470 SCCM (8 SCFH) with back pressure of 0.52 Bars (7.5 psig), and hydrogen pressure of 0.69 Bars (10 psig)



Cost Analysis and Comparison between Metallic and Graphite Bipolar Plates